Wilson’s disease from a COMP perspective

Kerstin Westermark
Medical Products Agency
Sweden
Wilson’s Disease Center
Uppsala University Hospital
Kerstin Westermark, M.D., Assoc. Prof.

Diagnostics
- MRI (brain)
- PET (dopamine)
- PET (copper)

Genetics
- WD gene mutations
 (Manifold sequencing)

Patient care
- WD team
- Patient support group
- Long term treatment with Trientine

Psychiatrics
- Mapping psychopathology and neurophysiology
Progressive lenticular degeneration
a familial nervous disease associated with cirrhosis of the liver

SAK Wilson
Thesis, Univ. of Edinburgh, 1911
Spasticity
Tremor
Contractures
”As the doctor says of a wasting disease, to start with it is easy to cure but difficult to diagnose; after a time, unless it has been diagnosed and treated at the outset, it becomes easy to diagnose but difficult to cure.”

The Penicillamine Story
(From: J M Walshe, Movement Disorders, Vol. 18, No. 8, 2003)
Early 1950s Univ. College Hosp. London:

JM Walshe, using paper chromatography, observed a new compound in the urine of a patient treated with penicillamine - penicillamine.

Penicillamine reacted with ferric chloride: blue colour, presence of an SH-group

Chelating properties?
Boston City Hosp., 1955: JM Walshe

- Denny-Brown/Uzman working on patients with WD
- Treatment with British antilewisite (BAL) i.m. – painful, toxic, tachyphylaxis
- Patient Joe G failing on BAL treatment
- JM Walshe – Penicillamine – copper removing?
- 2 g from prof. Sheehan working on chemical synthesis of penicillin at MIT
Penicillamine "toxicity testing"

- No published data on toxicity in man/little in animals
- JMW observation: Anyone treated with penicilline (including JMW) excreted penicillamine in the urine – apparently without ill effect
- 1st study in man: JMW took 1 g of penicillamine - a crystalline powder smelling sulphur
- JMW being well and alive next morning…
"Clinical Trial" – no ECs, No FDA...

...gave the 2nd g to patient Joe G

Result: Satisfactory copper excretion

- Conclusion: Further studies with penicillamine justified

- More penicillamine needed – MSD provided several grams - but MSD penicillamine failed to induce cupriuresis...

- JMW test: No blue colour with ferric chloride (tap water) - long storage – autooxidisation – no SH-radical - no copper chelation
Penicillamine production story

- Mann’s Fine Chemicals, New York produced 50 g of penicillamine
- JMW brought this to his father, Sir Francis Walshe, prof. in Neurology in London

3 patients with WD were treated:
All responded well - No 1 and 2 were put back on BAL
Penicillamine story, cont.

Patient No 3, Shirley

- severely parkinsonian, failed to improve on BAL - prime case for a trial of a new therapy (no ECs, No drug safety committees)
- JMW prepared penicillamine, packed into capsules, gave to Shirley - 450 mg/d.
Shirley improved but not until after 1 year of treatment (low dose)

- Married
- Three children
- 47 years of penicillamine treatment – 1.5 kg in all
Walshe JM, Penicillamine, a new oral therapy for Wilson’s disease.
Penicillamine Story, cont.

Production problems
Solution:
The Distillers Company Biochemicals –
main manufacturers of penicilline by fermentation - produced penicillamine
Wilson disease history

1993
WD gene cloned by three independent groups: Bull et al, Tanzi et al and Yamaguchi et al

The Wilson’s disease gene encodes a copper transporting ATPase which is expressed in hepatocytes - maintains copper homeostasis – excretion of excess copper into the bile
Semin Liver Dis 2000;20:353-64
All registered mutations in *ATP7B* 14/02/02

- Missense-mutation
- Insertion
- Deletion
- Nonsense-mutation
- Splice-site-mutation
- Deletion in splice-site

- Copper-binding domain
- Transduction domain
- Putative phosphorylating domain
- ATP-loop
- ATP-hinge

www.uofa-medical-genetics.org/wilson/index.html
The COMP perspective

All treatments presently used have been developed in academic institutions

1954 Peters, Oxford (BAL)
1956 Walshe, Boston (penicillamine)
1961 Schouwink, Arnhem (zinc sulphate)
1969 Walshe, Cambridge (triethylene tetramine - Trientine),
1984 Walshe, Cambridge, (tetrathiomolybdate)
1983 Brewer, Ann Arbor, (zinc acetate)
Conclusions – Drugs for Wilson’s disease:

• thanks to academic scientists
• thanks to serendipity
 - and lately
• thanks to the Orphan Drug legislation, EU Directive 2001/04
• treatment for Wilson’s disease has become generally available to patients within the EU
Conclusions
Present and Future treatments:

In the future: Gene therapy, cell therapy... based on current molecular knowledge
At present: Liver transplantation in liver failure
At present: Zinc acetate authorised in the US (Galzin) and EU (Wilzin – Orphan Drug)
Trientine in the US and in the UK/EU (Orphan Drug Designation)
Tetrathiomolybdate used experimentally in the US and EU
Penicillamine – still the main drug for Wilson’s disease – after 50 years on the market!